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Alam'aet--The ¢quivalent thermal resistance and l~rmeability of a L¢iboiz packing with small gap 
betw~n the disks ate calculated in the lubrication approximation. Power laws art obtained for both 
processes. For conduction, the packing of the interstices yields an isotropic equivalent network, 
whatever the original configurations. This is related to the scale invariance of the resistances of 
the gaps, and is used to derive the exponent of the power law with an excellent precision. The 
equivalent permeability cannot be reduced to such a simple result, since the original configuration 
is always reminded; a good estimation of the exponent is derived by a simple argument. 

1. INTRODUCTION 

Recently most of our efforts have been devoted to spatially periodic media and have been 
condensed in a forthcoming book (Brenner & Adler 1985); such media can be viewed as 
adequate to represent some features of, in example, homogeneous porous materials. These 
media are supposed to possess a translational symmetry, i.e. they are globally invariant 
along sets of basic vectors. A cubic array of identical spheres furnishes the simplest example 
of such a medium. 

Concomitantly, geometrical objects with a dilational invariance have attracted more and 
more attention. A loose definition of such an object is that it looks the same whatever the 
observation scale; the usual example is the classical Sierpinski gasket. Such objects which am 
called fractals were first introduced by Mandelbrot; note that the reader is referred only to 
his most recent book (Mandelbrot 1982). This subjec t has now grown up in a very active 
field, since it gives a basic framework for self-similar structures. These structures can be 
found in polymer coils, polymers adsorbed on a solid surface (De C~nnes 1979), percolation 
network (Stauffer 1979); many suggestive examples are found in (Mandelbrot 1982). 

The following recent contributions dealing with fractals and mostly with the Sierpinski 
gasket may IX cited here. Critical phenomena, statistical mechanics and conductivity 
problems are presented in C~fen et al. (1980, 1981). The density of states and the spectrum 
of  the Schr6dinger equation have also attracted some attention (Alexander & Orbach 1982; 
Ramal & Toulouse, 1982). 

However, to our knowledge, no attempt has been made yet to calculate the various 
properties of  such a medium from a continuous point of  view. It is the purpose of  this series 
to fill in this gap. One of  the many challenges could IX the precise hydrodynamic calculation 
of  a self-similar porous sphere as a model of a polymer coil. 

With this total absence of  previous contributions in mind, we start by the simplest fractal 
object which is a Leibniz packing, according to Mandelbrot's terminology. Such a packing 
is obtained in the following way. Let us draw three disks tangent one to the other one; in 
the interstices between them, a fourth disk tangent to the t h r ~  former ones can IX added. 
In the three new interstices which appear, three new disks may IX added and so o n . . .  In 
the present case, the disks are assumed not to IX exactly tangent. A gap is left between them; 
it is assumed to IX small with respect to the radius of the disks between which it is located; 
it is a constant fraction of the radius of  the smallest disk. 

Besides its theoretical simplicity, such a packing can IX considered as a basic model for 
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mixtures of particles of various dimensions. In this sense, it may be considered as a 
generalization of previous contributions related to homogeneous materials (Cone 1971; 
Batchelor & O'Brien 1977). Moreover it will serve as a useful limiting case in the rest of this 
series, and as a guide when basic assumptions on the behaviour of physical quantities are 
needed. 

Two processes are analyzed in this fractal object. First, its equivalent resistance is 
calculated when the conductivity coefficient of the disks is assumed to be very large with 
respect to the conductivity of the continuous phase. Together with the hypothesis on the 
gap, this enables us to evaluate the transfer coefficient between two adjacent disks in the 
lubrication limit. Second, a Newtonian fluid is supposed to flow within the interstices and 
the equivalent permeability of the packing is calculated in the lubrication limit. 

In section 2, the construction of the Leibniz packing is exposed and the various 
lubrication formulae of interest are recalled. 

The third part is devoted to the description of the derivation of the numerical solution 
of the problem which involves two different steps: the construction of the packing with 
the insertion of  disks and the calculation of the transport properties of the packing by 
"deleting" the disks. 

Numerical results are presented and discussed in section 4. Some geometric features 
of  Leibniz packings are first exposed, such as the evolution of the largest and smallest 
curvatures in each generation of disks. For both transport processes, power laws are 
obtained. However a major difference exists between them; the conduction process leads 
to the same equivalent resistance whatever the initial conditions are; in some sense, the 
packing becomes progressively isotropic as the number of inserted disks increases. This 
property enables us to calculate exactly the equivalent resistance of the packing. The 
convection process does not yield isotropy. For each set of initial conditions, particular 
coefficients for the power law are obtained; note that the exponent is a constant. As a 
check, isotropy can be derived under conditions reminiscent of conduction. Finally, the 
assumption that permeability is controlled by the smallest disks present in the packing 
leads to a fair estimation of the exponent of the power law. 

Finally, the fractal and the spatially periodic characters are combined. This must be 
considered as an illustration of the fact that most porous media can be considered as 
homogeneous at a macroscopic length scale, but heterogeneous at a local scale. The global 
homogeneity is related to the global translational invariance at this scale, and is 
schematized by the spatially periodic character. The local heterogeneity is related to a local 
dilational invariance, which is in turn schematized by the fractal structure. 

2. B A S I C  E Q U A T I O N S  

General 
Consider three disks, almost tangent but otherwise arbitrary; the gap between any two 

of them is assumed to be small with respect to the radii of the two adjacent circles. They are 
numbered from l to 3. 

In step n -- l, a new disk is inserted into the interstice between the three first disks. It is 
numbered as 4; the maximum value of its radius is a~(4). In order to leave a gap equal to 
~am(4) where E is very small with respect to l, the actual value a(4) of  the radius is given by 

a ( 4 )  = ( I  - E)am(4) [11 

In step n --2, three new disks are created in the three interstices (see figure la). This 
construction process can be continued in an obvious way. During the nth generation, 3"= 
new disks are introduced into the packing. Hence, the total number Nn of disks after n steps 
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a. b .  c .  

Figure 1. Leibniz packing. (a) The construction process is illustrated up to n ~- 2. The disk 4 is created 
during the step n = 1, while the disks i = 5, 6, 7 are created during the step n =~ 2. Co) For conduction, 
the packing may be viewed as an electrical network equivalent to a triangular system. (c) For convection, 

the packing is equivalent to a star electrical network. 

is equal to 

5 + 3 "  
N.ffi 2 [2] 

Of course, relation[l] is assumed to hold for any disk i. 
In the conduction process, the conductivity kp of the disks is assumed to be much larger 

than the conductivity ks of the continuous phase; as an immediate consequence each disk i' 
has a constant temperature T(i). The heat flux q(i,i') between two adjacent disks i and i' is 
proportional to the temperature difference T(i) - T(i'). It will be shown in section 3 that we 
can reduce the corresponding electrical network to an equivalent triangular system as shown 
in figure l(b), with resistances R#(i,i'). Hence, the rates of heat flow Q#(i,i') per unit depth 
between the three initial disks are related to the temperature differences by 

T(i) - T(i ') ffi R~(i, i ' )Q~i,i ' ) /gkf (i,i" -- l, 2, 3). [3] 

We wish to calculate the three resistances R~(1,2), R#(1,3), R~2,3) as a function of  the 
number of filling disks N, inside the initial interstice and of  the radii of  the initial disks. 

In the convection process, three different pressures are applied outside the three disks 
(see figure lc). In general, the packing may be viewed as a star electrical network (note that 
this is obvious at step n = 0, when only three disks are present; the network is also equivalent 
to a triangle, but we prefer to view it as a star since it is reminiscent of the original 
configuration). The pressure at the center of the equivalent star is denoted by Pc. The flow 
rates per unit depth ~(i,i') of fluid flowing inside the gap (i,i') are proportional to the 
pressure difference 

9~" ~(i,i')=a2(1)Ps(i,i')~(i,i')-p~)/(~) ( i , i '  = 1, 2, 3) [4] 

where ~t is the viscosity of  the fluid. 
Again, we wish to calculate the three coefficients P~(I,2), P#(1,3) and P~(2,3) as a 

function of  the number of  filling disks and of  the radii of the initial disks. 
In the rest of  this section, we shall first calculate the characteristics of  a newly 

introduced disk as a function of  the surrounding ones and then recall the lubrication 
formulae. 

Geometry 
Let us consider three disks centered at the points A, B, C and of radii aA, as and ac 

(see figure 2). The circles are external one to the other one and are separated by three gaps 
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Figure 2. Geometry of the packing (a). Some notations are given in (b). 

respectively equal to 2gaB, 2gBc and 2gAc. We first want to know the radius as of  the inner 
circle tangent to the three circles A, B and C and centered at the unknown points. 

When the three initial circles are tangent, the problem was algebrically solved by Soddy 
(1936) (see also Coxeter 1969). The generalization to the present situation is not difficult 
and is briefly given in the appendix for sake of  completeness. It is preferable to use 
curvatures instead of  radii; they are defined by: 

= l/a,o fl = l/aB, y =  l /a  o o = I/a s , [5] 

a is the larger root of  the second degree equation 

0 2 (12 + m 2 + n 2 - -  21m - 2ran - 2 I n  + 4lmn)  + 2o[ctl 2 + t i m  2 + ~ n  2 - . . . .  

- (a + f l) lm -- (~ + ~)ln -- ([3 + ~)mn] + 0t2l 2 

+ f12m2 + ~2n2 -- 2a~lm -- 2~yln -- 2fl~mn = 0 [6] 

Where / ,  m, n are given by 

1 = (1 +gBcfl) ( l  +gBc~)  [7a] 

m = (I + gcA~)(1 +gcA~)  [7b] 

n = (1 + gA#t)(l + gAafl) [7c] 

It may be verified that (6) correctly reduces to Soddy's formula (1936), when the three 
initial circles are tangent, i.e. when/ ,  m, n are equal to 1. 

Finally, it should be recalled from (1) that the disk which is actually inserted is only 
a fraction 1 - ~  of  its maximum size a,; hence, assuming that the disk number is i 

a(i)  = (1 - ~)a s [8] 

The gap is thus equal to ~a,. 

Lubrication formulae  
When the conductivity kp of  the disks is supposed to be very large with respect to the 

conductivity k / o f  the continuous medium and when the gap 2g(i,i ')  between two disks of  
radii a(i )  and a (i') is very small with respect to these radii, the lubrication approximation 
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can be used. The temperature difference is then related to the heat flux per unit depth by 

T( i )  - T( i ' )  ffi r(i, i') . q(i, i ' ) /nk /  [9] 

where 

r(i, i') = [g(i, i') " (1/a(i)  + l/a(i '))] ':z, [lo] 

r(i, i') denote the thermal resistances. 
Second, consider a Newtonian fluid forced through the gap between two parallel 

cylinders. The flow rate per unit length may be expressed as a function of the pressure 
difference by 

av 
~(i, i') = P'( i ,  i ') . [l 1] 

91r 

where the equivalent permeability P'(i, i') is given by 

P'(i ,  i ' )=  4~/2"  [gS(i, i') " (1/a(i)  + 1/a(i'))] ':z. [12a] 

A dimensionless permeability P(L i') may be defined as 

P(i ,  i') = e ' ( i ,  i ' ) /a2( l ) [12bl 

It is thus equivalent to consider that the disk I has a radius equal to I, which will be 
implicity assumed in the following. 

3. METHOD OF SOLUTION 

In view of the apparent complexity of the basic equations [6], [10] or [12], the solution 
was numerically calculated. 

First, the geometry of the system was determined. Starting from three arbitrary disks, 
the packing was constructed in a few steps. Typically, eight steps were generated with a total 
number of disks equal to 3283 (see [2]). An example after 2 steps is given in figure 3(a). 

Simultaneously, for a given transport process, the resistance and the permeability ofeach 
gap are calculated by the relations [10] and [12] respectively. The equivalent networks are 
shown in figures 3(b) and (c), for n -- 2. 

It is well known from the theory of electrical networks (Bollob~s 1979) that a star is 
equivalent to a triangle. The star with resistances A, B, C may be replaced by the triangle 
with resistances A', B', C'  (see figure 3d) if 

A' = s/a, B" = s/B, c' = s/c [13] 

where 

S -- A B  + B C  + CA.  

This transformation may be inverted. The triangle with resistances A ' ,  B ' ,  C '  may be 
replaced by a star with resistances A, B, C if 

A = B'C'/T, B ~ C'A'/T, C -~ A'B'/T [14] 
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Figure 3. Equivalent networks for the Leibniz packing. The basic geometry is recalled in (a). The 
equivalent network for conduction (respectively convection) are shown in (b) (resl~'tively c). The 
simplification of these graphs is explained in the text. The star-triangle transformation is illustrated in (d): 

the letters A, B, C, A', B', C' denote the resistances. 

where  

T = A ' + B ' + C ' .  

The equivalent network in both cases can be obtained by a repeated application of  formulae 
[13] or [14]. For  instance, in the conduction case, the star relating the disk 7 with its 
neighbours 1, 3 and 4 (see figure 31)) is replaced by an equivalent triangle (see the broken 
lines in figure 3bl). The resulting graph can be further simplified by application of  the 
classical formula about  resistances disposed in parallel. Hence, we obtain the equivalent 
network (see figure 362) where the disk 7 has been "deleted" and the new values r'(4, 1), 
r'(4, 3) and r ' ( l ,  3) of  the resistances (4,1), (4,3) and (1,3) modified as 

r'(4, l) = (r(4, 1)- 1 + r(7, 3)/$1)-i 

r'(4, 3) -- (r(4, 3 ) - ;  + r(7, 1)/Si)-l 

r'(1, 3) ---- (r(l ,  3) -~ -F r(4, 7)/S~) -~ 
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with 

Si = r(7, 3). r(7, l) + r(7, 1)r(7,4) + r(7, 4)r(7, 3) 

by application of [13]. 
This "deletion" is systematically performed until only the three first disks remain; the 

resistances of the various branches are R~(1, 2), R7(2, 3) and R7(3, 1) according to [3] (see 
figure 3b3). 

The same process may be applied to the convection network. Here, triangles are 
transformed into stars and the resulting graph is simplified by adding resistances in series. 
Again, this is systematically performed until only the first three disks remain. According to 
[4], the permeabilities of the various branches are P7(1, 2),/7(2, 3) and P7(3, 1) (see figure 
3.c.3). 

These calculations were done by computer. Each step of the calculations was carefully 
checked on several examples. 

4. RESULTS AND DISCUSSION 

Geometry 
We shall start this section by a brief discussion of the geometrical characteristics of the 

packing. 
Three basic geometries are investigated and are described in Table 1. Four values of the 

parameter c are systematically studied 

= 10 -2 ,  10 -3,  10 -4, I0 -5. [15] 

n = 8 successive generations of disks were found to be sufficient to display the desired 
behaviour. 

Let us first consider a close packing of disks obtained for ~ --0 and let us study the 
evolution of the largest and smallest curvatures Sm,(n) and S~o(n) of the disks generated 
during the step n. 

As already stated, this corresponds to the case where 1, m and n are equal to 1. Hence, 
the second degree equation [6] may be somewhat simplified; the curvature of the circle 
internally tangent to the three initial circles may be expressed as (Soddy 1936) 

--or + / / + ?  + 2 d  [16a] 

where d is given by the relation 

d = (gfl + fl? + ?~)tr~. [16bl 

Table 1. Geometry. Names for the various cases are derived from the fact that three equal disks can 
form the basic pattern of an hexagonal array and so o n . . .  The values of the gap ~ are given by [15]. The 

radius of disk 1 is assumed to be equal to 1 - 4 / 2  in all cases (see [12]) 

Name 

Int t ta l  
radtt 

Patterns 

Hexagonal Square Trt angu]ar 
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Let us apply these formulae (16) to the construction of a close packing of disks for E = 0. 
Since tr is a monotonically increasing function of~t, fl and y, the smallest disks (i.e. the largest 
curvatures) are found in the interstices between the smallest disks of the last three steps (see 
figure 4). Hence, as an application of [16], S m ~ ( n )  may be expressed as 

with 

S ~ ( n )  = Sm~,(n - 3) + S=,~(n - 2) + S,=~,(n - 1) + 2d(n) [17a] 

d ( n )  = [Sm~(n  - 3)S=~(n - 2) + Sm, , (n  - 2)Sm~(n - 1) + S r ~ ( n  - l)Sm~(n - 3)] t/2 [17b] 

This may be equivalently represented by Boyd's matrix notation 

( S m ~ ( n  -3),Sm~(n -2),Sm~(n - <.# [18a] 

S =  

r0 0 1 0 

1 0 1 l 

0 1 1 I 

0 0 2 1 

with 

[ sb] 

Observe how the two first columns of the matrix S make the curvatures shift. The matrix 
S may be diagonalized and written as 

S = P  

0 o ol 

0 2t 0 0 

0 0 22 0 

t0 0 0 23 

p - l  [19a] 

where the columns of the matrix P are the components of  the eigenvectors of S. Hence, (18) 
may be evaluated as 

S n-I  ~ p  

r2~-, 0 0 0 

0 27 -! 0 0 

0 0 2~-' 0 

0 0 0 2~-1 

p -  i [19b] 
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Figure 4. Construction of the largest curvature (a); the disk(s) of maximum curvature S~=(n) is found 
inside the interstice located between the disks with maximum curvature at the three previous steps 
Sm~(n - 3), Smz(n - 2), Sm,(n - i). Construction of the smallest curvature Co); the disk(s) is obtained by 

progressive insertion of disks inside the gap (1,2). 

For large values of n, the largest eigenvalue 20 of S becomes predominant and we can write 

Smax(n) o~ Ao n Ot N~ °s'~dl°g3 [20a] 

with the understanding that A0 -t  is included in the proportionality coefficient. 
The value of the last exponent is equal to 0.96600, since 

20 = 2.8900 [20b] 

On the other hand, the largest disks at a given step are obtained by the progressive insertion 
of disks inside the gap between two of the initial disks, as it is illustrated in figure 4(b). This 
is again due to the fact that a is a monotically increasing function of ~,/~ and ~ (see [16]). 
A matrix formulation analogous to [18] can be given; however, all the eigenvalues of the 
matrix are equal to 1. Thus, the minimal curvature S~,(n) is not given by a power law 
anymore, but by a polynomial (see Boyd 1973) 

S~.(n) = (cx + #)n 2 + 2dn + 7. [21] 

When ~ is not equal to zero, the curvatures of all the disks are numerically obtained by a 
repeated application of the formulae [6] and [7]. The influence of the parameter ~ on S~(n)  
and S ~ ( n )  is illustrated in figure 5 for the hexagonal array. For ~ = 0, the analytical results 
[18] and [21] are reobtained; the exponent of S ~ ( n )  in [20] equal to 0.96600 is also well 
verified. It was confirmed that, for the range of values of E, the smallest and largest disks for 
E ~ 0 were found at the same place in the packing as for ~ = 0. 

Finally, note that the log-log plot in figure 5 makes the difference between ~ = 0 and 
10 -2 appear very small, which is quite not the case, especially for S,,°(n). Note also the 
difference in behaviour; the largest curvatures differ only by a constant in a first approxi- 
mation, while the smallest curvatures separate progressively. 

The insertion of smaller and smaller disks may create some problem in view of the 
lubrication approximation. If a disk is inserted inside the lubrication zone of two disks 
generated at a previous step, the approximation does nothold anymore. 

At first sight, it may be thought that the critical step is related to the smallest disks. This 
is not the case since in view of [20], the radius ratio between the inner disk and the external 
ones ranges between 2.89 and 24.1; thus the lubrication zones cannot be disturbed. 

Actually, the critical point is connected with the largest disks as shown in figure 4(b); 
these disks penetrate progressively inside the lubrication zone of the initial disks 1 and 2. For 
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Figure 5. Largest and smallest curvatures for an hexagonal array as a function of the number of disks 
N.. Values ore are: 0(+) ,  10-2(x). 

the hexagonal array, when E is varying from 0 to 10 -2, it is easy to show that the distance 
between the line of centers of the initial disks I and 2 and the center of the disk Sm~,(8) varies 
from 0.11 to 0.08. This is acceptably outside the lubrication zone of disks I and 2. 

Moreover, it will be demonstrated in the following that the transfer controlled by the 
initial gaps is largely negligible with respect to the transfers controlled by the other gaps. 
However, for E ~ 0, the insertion process cannot be indefinitely continued since, for n large 
enough, a disk is created which is located on the line of centers of the original disks. This 
limitation is not important since the power law behaviour is obtained before this 
phenomenon occurs. 

Conductivity 
Calculations were systematically performed for the configurations listed in table 1. 
The presentation of the results may be started by the hexagonal configuration, which 

is given in figure 6. The equivalent resistances of the branches are all equal to R~(1,2) (see 
[3]) since the initial disks are identical. The first striking feature is that a power law is very 
quickly reached; for N, == 16 disks, i.e. after 3 steps, R~(1,2) is very close to the final power 
law, which may be expressed as 

R,41,2)=r ' [22] 

where K is a constant which depends upon ~, and = is the exponent which can be deduced 
from the numerical results as equal to 

= ----_ - - 0 . 4 6 4 .  [23] 

This result is of  course consistent with our intuition, since such a fractal structure was 
supposed to lead necessarily to a power law. The second important feature is that we 
obtain within a very good approximation the following relation for various values of E 

R~(l,2)/x/~ = cst, for a fixed value of N. [24] 

The power 1/2 in this relation is obviously a direct consequence of the fact that the 
resistance of  the elementary gap varies as a square root of the gap (see [10]). 
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Figure 6. Equivalent thermal resistances RN(L2) l'or an hexagonal array as a function of  the number of  
disks N,, values of  c are: 10-2(a), 10-3(b), 10-4(c), 10-S(d). 

It is surprising that the relation [24] holds for all the values of Am. In v iew of figure 
5, one would actually expect some differences for large N,, when the geometrical structure 
of the packing is a sensitive function of E. 

A pleasant consequence of this property is that all the curves for the various values 
of E can be deduced from a master curve with a very good approximation: 

RN(I,2) = x/~RN(I,2) ° [25] 

where RN(I,2) ° is tabulated in table 2. 
The same may be shown to be true for a square and a triangular packing. The 

corresponding quantities RN(I,2) °, RM(2,3) ° and R~(1,3) ° are also given in table 2. 
Let us now compare in table 2 the three equivalent resistances of the triangular 

network. It is remarkable to notice that the values tend towards a common limit, though 
the initial values are largely different due to the variations in the original configurations 
(illustrated in table 1)~ Moreover, the resistances of  the two other packings (hexagonal and 
square) also tend towards the same limit, as it can be observed from table 2. 

Hence, as a consequence of the numerical results, the following empirical law may be 
stated. In the limit of large values of Am, the resistances associated to the various branches 

Table 2. Reduced thermal resistances R~(i ,  i ' )  ° l'or the various arrays. RN(i, i ') ° is defined by [25]. The 
isotropic case corresponds to [31] 

N n 

3 

4 
7 

16 
43 

124 
367 

1096 
3283 

Hexagonal 

RN(I,2)° 

1 
0.695 
0.456 
0.289 
0.179 
O. 109 
0.0665 
O. 0402 
0.0242 

e . ( 1 , 2 )  ° 
Square 

RN(I,3)%RN(2,3)° 

1 
0.686 
0.450 
0.286 
0.178 
0.109 
0.0663 
0.0401 
0.0242 

0.131 

0.837 
0.514 
0.311 
0.187 
0.112 
0.0676 
0.0406 
0.0244 

RN(1,2)° 

0.866 

0.633 
0.430 
0.278 
0.175 
0.108 

0.0659 
0.0400 
0.0241 

Triangular 

RN(2,3)° 

0.645 

0.498 
0.361 

0.247 
0.162 
O. 103 
0.0640 
0.0392 
0.0239 

I RN(I,3)o 

0.817 

0.603 
0.415 
0.272 
0.172 
0.107 
0.0655 
0.0398 
0.0241 

Isotroptc 

1.414 
0.849 
0.509 
0.305 
O. 183 
0.110 
0.0660 
0.0396 
0.0238 
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of a Leibniz packing are equal and behave like a unique power law irrespective of the initial 
conditions. 

This seems to be the salient feature of the process since it will now be shown that the 
exponent ,, of the law may be derived from this hypothesis of isotropy. 

This derivation may be made as follows. Let us consider a Leibniz packing with n + 1 
steps, where n is sufficiently large. The deletion of the generations n + 1, n . . . .  ,2, by the 
process previously described yield the situation depicted in figure 7. According to the 
recurrence hypothesis that we have just made, the resistances Rsv(i, i ') of the solid lines are 
equal one to the other one and given by [22] 

Ru.(i .  i ')  = K N .  ~ [26] 

since it corresponds to a Leibniz packing with n generations. The resistances of the initial 
gaps (the broken lines in figure 7) can be neglected since they are very large when compared 
to the resistances RM. when n is large. It is then a simple matter to show that the network 
is equivalent to a triangular network whose links have a resistance equal to 3/5 RN.. Hence, 

(3) 
Ru.+,= ~ Ru. [27a] 

or equivalently 

Rlv. a [27b] 

But n may be expressed as a function of N, as a direct application of [2]. Thus, [27b] may 
be modified as 

Ru. ot N,,"' [28] 

where the exponent c~' is given by 

u, = log 3/5 = - 0.46497 [29] 
log 3 

in excellent agreement with the empirical value [23]. 
Note that in triangular systems with dilational invariance (Gefen et al. 1980), log(d + 1) 

appears in most of the results; d is here the dimension of space. In the present configuration 
which is planar, d is equal to 2 and log 3 appears in [29]. 

~ .R N 

o .  b .  

Figure 7. Derivation of the thermal power law [22]. (a) Packing with n + 1 steps; the solid lines correspond 
to the equivalent resistances of the last steps; the broken lines are the initial resistances. (b): resistances 

equivalent to the initial packing of n + 1 steps. 
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The success of this semi-empirical result suggests that we should obtain a good model 
of the packing by assuming that the resistances of all the branches of the network are equal. 
Since the gap between two disks is a constant fraction ~ (see [8]) of  the radius of the smaller 
disk i, the resistance may be expressed as 

J 2 ( l  a(i)'~ "*- a- -~)  [30] 

with a(i) < a(i'). 

Let us assume that the ratio a(i)/a(i') is negligible; the network is thus only composed 
of resistances equal to , ~ .  

Some easy algebra leads to the equivalent resistance as a function of n. First, a 
recurrence formula may be exactly calculated as 

1 D [31] 
A , , . +  - -  1 1 - - +  

RM. 3t, 

where t. is given by 

t, = f l /~ . /~ /" .  [32] 

The equivalent resistance RN, is then deduced as 

[ CI]-' l +  . [33] 

Hence, when n is sufficiently large, RM, is equivalent to 

This is the so-called isotropic case, since all the elementary resistances are assumed to be 
equal. Comparison is made in table 2 and agreement is seen to be excellent. Hence, the 
numerical results are well explained by this semi-empirical way of reasoning. 

In the following (see [40] and sq.), it will be suggested that the fundamental reason for 
the success of this simple model is related to the scale invariance of the resistance of the 
gaps. That is to say, the gap resistance is unchanged when all dimensions are multiphed 
by a unique factor ~. This invariance leads to the observed isotropy and thus to the 
particular form of the law. 

Finally, the fractal and the spatially periodic characters may be combined. Consider 
an hexagonal spatially periodic pattern of disks of radius 1 - ~/2, or a square one. The 
interstices between them are then filled up in the previously described manner. The result 
may be regarded as a basic model of an heterogeneous material which is translationaily 
invariant. 

The resulting arrays are isotropic; hence the macroscopic conductivity tensor or its 
inverse the macroscopic resistance tensor is spherical; note that the general properties of 
these tensors are given in Brenner & Adler (1985). The value of the macroscopic resistance 
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coefficient may be expressed as 

hexagonal 

P. M. ADLI~ 

RN,(I,2)/2V/3 (35a] 

[35b1 square 1/2[1/R~,(1,2)+ 1/RN,(I,3)] 

Introduction of [34] into [35] yields 

 o a onal 

square 5 " [36b] 

which may be interesting to check experimentally. 

Permeability 
Numerical calculations were performed for the geometries given in table 1. 
Results for the hexagonal array are represented in figure 8. As for conduction, the 

equivalent permeability P~(1,2) may be expressed by a power law 

p~( l ,2 )  = ~ v /  [371 

where K depends upon E, while # is deduced to be close to - 2  

/~ _~ - 2.04 [38] 

In view of [24], it was a priori expected that, for a given value of N, 

PN(I,2) • E 5n = cst [39] 

However, the complete numerical results show that the relation [39] is not well verified 

PN (1,2) 
n 

10 -~°. 

10 "15 • 

(3 

I() 100 1000 
Nn 

Figure 8. Equivalent permeabilities for an hexagonal array as a function of the number of disks Nn. Values 
of E are: 10-Z(a), 10-30)), 10-4(c), 10-S(d). 
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except when e is very small. This is of  course due to the stiff dependance of the permeability 
of the elementary gap as a function of the width of the gap; according to [12], it varies 
as es/2. Hence, the constant K is a sensitive function of the geometry of the packing. 

The second disturbing feature is that for various original configurations we do not 
obtain the same final results as for conductivity. This point is illustrated in table 3. Hence, 
the isotropy hypothesis is not valid here, and we cannot deduce the value of the exponent 
p as before. 

This behaviour was thought to be caused by the non scaling invariance of the 
permeability P(i,i') of the gap (i,i') as it is expressed by [12]. When all the dimensions are 
multiplied by a factor ~, the permeability is multiplied by ~2, as it is easily derived from 
[12]. In order to check the fact that isotropy is not obtained except for v = I, the following 
fictitious law of permeability was introduced 

P(i , i ' )  = 2 "/2 " g'( i ,  i') " - ~  + a(i') /J [401 

where all quantities are dimensionless. 
Again a power law was obtained for the equivalent resulting permeability P~(i, 2). Let 

n denote the exponent of this power law; n is represented as a function of v in figure 9. 
A useful check of the numerical calculations is provided by the case v = 1. For this 

value, the isotropic character is again obtained as it is expected on intuitive grounds. 
Moreover, following the same line as previously, the exponent v is found to be equal to 
- l o g  3/5/1og 3, and this is well verified numerically. 

We are now left with the question of evaluating the exponent. A very simple argument 
may be derived as follows. When v is large enough, it may be assumed that the equivalent 
permeability is controlled by the smallest gaps. Hence, the introduction of [8] into [40] 
approximately yields 

P# ~ E '~" [Sm~(N)]-( '- l)r~ [41] 

As a direct consequence of [20], P~ is obtained as 

PN '~ ~v/2 . Nn -o.483(v - I) [42] 

Table 3. Equivalent permcabilitics for the triangular array, e = I 0 - '  

N n 

3 

4 

7 

16 

43 

124 

367 

1096 

3283 

Pfln(3, 2) 

0.91386.10 .5 

0.17718.10 .5 

0.22732.10 .6 

0.25912.10 .7 

0.29024.10 .8 

0.32470.10 .9 

PNn{3,1) 

0.11571.10 .4 

PNn(2,1) 

0.12273.10 -4 

0.19347.10 .5 0.19862.10 "5 

0.18541.10 .6 0.17320.10 -6 

0.19844.10 .7 0.18170.10 "7 

O. 21900.10 "8 O. 19946.10 .8 

0.24393.10 .9 0.22179.10 .9 

0.36327.10 "10 0.27252.10 "10 0.24765.10 "10 

0.40645.10 "11 0.30477.10 "11 0.27690.10 "11 

0.45477.10 "12 0.34094.10 -12 0.30974.10 "12 
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4. 

-2 

-3 
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Figure 9. Variations of the permeability exponent p as a function of v (see [40]). Points are obtained from 
the numerical results; the straight line is deduced from [43]. 

Hence • is given by 

] /=  --0.483. (v -- 1). [43] 

The agreement when v = 5 is excellent, since we would obtain 

p - - 1.932 [44] 

to be compared to [38]. 
But this excellent agreement seems fortuitous in view of the comparison made in 

figure 9. 
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A P P E N D I X  

The famous Greek mathematician Appolonius of Perga devised an algorithm to draw 
the five circles tangent (externally or internally) to three given circles. We are only interested 
by the inner circle (see figure 2). 

Consider a triangle ABC detailed in figure 2(b). The half perimeter S of this triangle is 
given by: 

l , b '  S = ~ (a + + c') [All 

where a', b' and c' are the lengths of the three sides. From elementary geometry, it can be 
shown that 

cos2 A = s ( s  - a ' )  
2 b'e'  [A2a] 

sin2 A = ( s  - b ' ) ( s  - c ' )  
2 b'c" [A2b] 

b a + c a _ a,2 
COS A = 2b'c' [A2c] 

a '  b' c' 
sin A = sin B = sin C [A2d] 

' b '  In view of [A2d], a ,  and c' may be replaced by sin A, sin B and sin C in (A2c). It yields 

sin 2 A - sin2B - sin 2 C + 2 cos A • sin B • sin C = 0 [A3] 

An identity which is valid for any triangle, or for any triplet of angles whose sum is equal 
to 2n. Going back to the general problem depicted in figure 2(a), the relations [A2a] and 
[A2b] can be written for the angle S,~ in the triangle SBC. 

sin2 SA = (ac + gac)(aB + gnc) 
2 (as + aB)(as + ac) ' 

cos' S~ = (as + aa + ac + gBc)(as - gBc) 
2 (as + aB)(as + ac) 

[A41 

Equivalent relations may be written down for the angles Ss and S, in the triangles SAC and 
SAB. Since the sum of the three angles S~/2, Sa/2 and S J2 is equal to n, they may be inserted 
in the identity [A3], with A ffi SA/2, B = SB/2, C = S J2. 

Introduction of the definitions [5] and [7], and elementary manipulations of [A3] 
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expressed for SA/2, Ss/2 and Sc/2 yield 

(a + a) 1 - (~ + ~r)m --(? +a)n +2[(o'?+ ~3' +flo +gBcfl?a)- (1 -gsca).mn]t/2=O 

[A5] 

This equation is first squared and subsequently rendered symmetric by the use of [7a]; [6] 
easily follows. 


